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NAG-thiazoline, An N-Acetyl-f-hexosaminidase
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N-Acetylhexosaminidases (NAGases) are enzymes that pro- H YCHS - ,:/HL“ : _\iHs
mote the cleavage df-acetylhexosaminides, as during glyco- ) OH H /1
protein processing and glycolipid catabolidnT.hey are highly H{&O - o o OR | ﬁi o
specific inasmuch agluco-andgalactgyranosides lacking the bound substrate HO o bound rod
2-acetamido functionality are poor substrate# number of Ns=( eund product
inhibitors of NAGases have been discovered; these typically _ CHg
mimic some aspect of an enzyme-protonated 2-acetamidopy- /i
ranoside substrate or a derived transition state (flattened C-1 ’%‘ o)

conformation, positive or partially positive charge), and they
uniformly possess an acetamido group at the C-23sfieBy
analogy to a widely cited mechanism for retainifigylucosi-

daseg, retaining N-acetyl3-hexosaminidases may be said to Substrate

operate by stabilizing a transition state leading to a covalent
enzyme-substrate complex (Scheme 1, upper pati#lterna-
tively, the configuration-retaining aspect of certain NAGases
may be attributed to participation of the neighboring C-2
acetamido group, leading initially to a cyclized oxazoline
intermediate (Scheme 1, lower path)None of the existing
NAGase inhibitors points to a choice between these two
mechanistic possibilities, as the latter both feature similar
transition state characteristics in the vicinity of G-However,
allosamidin @), an inhibitor of chitinase, incorporates a cyclic
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Scheme 2. Synthesis of NAG-Thiazoline and a Precursor
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isourea functionality that, when protonated, resembles the
cyclized oxazoline shown in Scheme 1. A recent crystal-
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Figure 1. Inhibition of jack bean NAGase catalyzed hydrolysis of
PNPGIcNAc by NAG-thiazolind. The concentrations df used were
0.000 ¢©), 0.087 fr), 0.203 ), 0.434 @), 0.868 (1), and 2.026 &)
uM. Inset: graphical analysis d; by plotting K, apparent against
[NAG-thiazolin].

Treatment of 2-acetamido-2-deoxy-1,3,4,6-téacetyl{-
p-glucopyranosk (3, Scheme 2) with Lawesson’s reagéred
to selective formation of the thioamide(observable by TLC),
which then cyclized by displacement of acetate to provide the
thiazoline triacetatd. The structure ob was confirmed by
the close match of itdH NMR spectrum with that of the
corresponding NAG-derivedxazolinetriacetate!® The a-ano-
mer of 3 did not cyclize under these conditions, presumably
because direct participation of the thiocarbonyl with inversion
at C-1 would require a strainemlansfused transition state.

Methanolysis of the acetyls and then column chromatography fo

gave the NAG-thiazolind as a hygroscopic off-white solid.
Not only is1 stable at basic pH, but it also survives protonation
with trifluoromethanesulfonic acid in chloroform solution fol-
lowed by neutralization.

NAG-thiazoline 1 was found to be a potent competitive
inhibitor of jack beanN-acetylhexosaminidase as measured
againsip-nitrophenyl 2-acetamido-2-deo)o-glucopyranoside
(Km = 0.62 mM)1* Reciprocal replot of appareiit,, values
vs inhibitor concentration, as shown in Figure 1, reveal§ a
for 1 of 280 nM. It therefore binds almost 20 000 times more
tightly than the parent sug&-acetyl$3,0-glucosaminel{; = 5

mM) and may be compared to the best inhibitors of this enzyme,

such as 2-acetamido-1,2-dideoxynojirimycif; & 140-230
nM), and 2-acetamido-2-deoxynojirimycin (1.2 nkA).

If the N-acetyl5-hexosaminidase uses theetamidogroup
for anchimeric assistance in the cleavage of fhglycosidic
linkage, then a glycoside of 2-deoxyt@ioacetamides-p-

glucose might be converted by the enzyme to the stable,

inhibitory, thiazolinel, resulting in a time-dependent loss of
enzyme activity. The 4-methylumbelliferyl 2-thioacetamido
glucoside?7 was prepared from 4-methylumbelliferyl 2-acet-
amido-2-deoxy-3,4,6-tf@-acetyl$3-p-glucopyranoside!® 6 by
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Figure 2. Time course of release of 4-methylumbelliferone from 0.65
mM MuTag (7) upon reaction with jack bean NAGasg)( Spontaneous
decomposition of7 (a).

(Scheme 2). It was isolated after crystallization as a white solid,
mp 144.5-146 °C, and then was further purified by HPLC to
remove traces of thiazoling. Incubation of jack bearN-
acetylglucosaminidase with, while monitoring the release of
4-methylumbelliferone fluorometricalBf,resulted in slow, time-
dependent loss of activity, as shown in Figure 2. Reaction ovel
a 300 min period resulted in a 21-fold reduction in rate with
release of 2.2zmol of 4-methylumbelliferone, consistent with
stoichiometric conversion afto 1. No loss of enzyme activity
occurred in the absence @f and the putative precursaris
itself a poor inhibitor of jack beam-acetylglucosaminidase
when measured over time periods too short for formation of
significant quantities ofl.

These results on jack bean NAGase provide strong evidenc
r a mechanism involving acetamido participation and an
oxazoline intermediate (Scheme 1, lower path) and complemen
the chitinase crystallographic studlyFurthermore, 2-deoxy-2-
thioacetamido glucosides such @smay prove valuable as
enzyme-activated inhibitor precursors with adjustable properties
according to their aglycon portions.
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These mixtures were quenched at various incubation times by adding 1.2
mL of 0.2 M glycine buffer, pH 10.65. The fluorescence due to 4-methyl-

umbelliferone was then measured at 450 nM. The resulting time-depender
decrease in activity was shown to be due to the buildup of a reversible

(14) Jack bean NAGase was obtained from Sigma Chemical Company inhibitor rather than covalent inactivation by repeating the experiment at a

and was assayed by usipgnitrophenylN-acetyl-p-glucosaminide in 50
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Competitive inhibition studies were performed as described in ref 2.

higher enzyme concentration and then diluting the sample prior to assay
Under these conditions essentially no time-dependent loss of enzyme activit
was observed.



